
How Non-Designers Can Make
Their Web Apps Easier To Use

NORMAL UI

Introduction ... 1

Normalization .. 4

Workflows, Screens, and Frames ... 6

How Do You Normalize? ...10

Metrics ... 12

Low-frequency/High-complexity - You Should Normalize ...16

High-frequency/High-complexity - You Should Denormalize .. 25

Low-frequency/Low-complexity - You Might Normalize ...37

High-frequency/Low-complexity - You Should Denormalize ..45

The Four Quadrants ...51

Normalization In The Real World ... 53

Keep Workflows Small-ish ...54

Determine Complexity on a Napkin ..56

Normalize Dangerous Workflows ...58

Workflows Form the App Skeleton ...61

Normalized UIs Have Dev Benefits ... 62

Handle Scope Creep Through Normalization ...64

Provide Context on Normalized Screens ..65

Make Clear Calls-to-Action ... 67

Help Users Recover From Errors ...69

Tell Users They Were Successful, and Help Them Keep Going ..72

How To Talk About Normal UI ..74

Recommended Reading ...75

Conclusion .. 76

1

Introduction
How do you make a web application easier to use? Note that I said “easier”, not
“easy”.

Making a web application “easy-to-use” involves multidisciplinary expertise in
areas like usability and web performance. Making a web application “easier to
use” just means doing something that improves the experience.

That’s what this book teaches - a repeatable technique you can use to make
any web application easier to use.

If you’re a developer who builds web applications (e-commerce, SaaS, intranet
apps, or anything else you’re building), this book is for you. Designers who know
more about making web apps look good, but less about making them work well,
will also benefit.

Your web apps need to be easier to use. Usable software is successful software.

Where did this technique come from? Well, I’ve had an interesting career. For
decades, I’ve been a developer and database architect. I’ve built many web
applications that run large businesses. I’ve taught over 350,000 students to build
web apps in my online courses.

I’ve also spent much of that time as a user experience designer. I’ve built design
systems, run countless usability tests, designed interfaces used by thousands,
and trained others in cognitive science, usability, and more.

Working heavily in both code and UX is considered rare in the industry. It’s given
me, I think, a unique perspective.

This book is a result of my years of straddling the dev/UX fence. After 25 years of
both building software and watching people use that software (and software

2

others designed and built) I can say with confidence that using this technique
will make your software easier to use.

That doesn’t mean I’m not standing on the shoulders of others. This technique
sits on top of the massive body of work of usability engineers, cognitive scientists,
and more.

I’ve refined and used this approach for decades, resulting in software that
usability tested fantastically well, is easy for devs to implement, attracted more
and happier users, and satisfied clients and stakeholders.

You don’t need to be a designer to use these ideas. The technique is simple
enough to be applied to any web application.

I call it Normal UI.

The
Technique

4

Normalization
When I use the word “normal”, I’m referring to the term as it’s used in databases.
A quick understanding of that will help you understand Normal UI.

In a “relational” database you might have a table (also called a “relation”) that
looks like this:

A denormalized table, in all its glory

This table is “denormalized”. Each row contains a lot of information about the
customer, the product they ordered, and the order itself. Each row of the table is
doing a lot of work.

This kind of unfocused table results in data (like the customer’s name and
address) being repeated, which means it’s more work when the customer
moves and needs to update their personal information.

When you normalize a table like this, you split the information into multiple tables
that might look like this:

Customers
Products

Order DetailsOrders

5

Each table focuses on one type of thing (Customers, Products, Orders, Order
Details). Information is only stored in one place and referenced as needed.

When it comes to avoiding duplication and keeping each table easy to reason
on, you want normalized data. But there are times (like doing a task that
requires seeing all the data), when you need to pull it all together, and use a
denormalized table.

In database land that’s usually done via something called a SQL query,
which provides a way to temporarily combine multiple tables into a single
denormalized table. But that’s beyond this book.

Database normalization provides the inspiration for Normal UI. In Normal UI, we
think of workflows and UI screens as normalized or denormalized. For the context
of this book, then, let’s specify a definition of “to normalize”:

Normalize (verb):
1. In database design: to organize data so that each table
is focused on a single topic or theme, thereby eliminating
redundancy and ensuring data integrity.

2. In user interface (UI) design: to split software workflows across
different screens, so that each screen is focused on a particular
task, simplifying the user experience and minimizing confusion.

For the rest of this book, we’ll be focused on definition #2. How do you normalize
an interface? When do you want a denormalized one? How will that make your
web application easier to use?

6

Workflows, Screens, and Frames
If you design or build software, you may be used to thinking in terms of
“features”. But that isn’t helpful here. Instead, we are going to think in terms
of “workflows”, “screens”, and “frames”. In Normal UI we define these terms as
follows:

A screen is a page or a modal in a web application.

A frame is the set of UI elements that can all be accessed simultaneously by
the user at a point in time. It’s everything the user can interact with, at a single
moment, without having to reveal it in some way. It represents a subset of the
screen’s potential content.

A workflow is a sequence of actions that the user can take. An action may or
may not take you to a new screen but will almost always take you to a new
frame.

A simple example is a set of accordions. We have a screen on its starting frame.

7

Let’s say a possible workflow is to click on an accordion to reveal its contents,
then click again to hide its contents. Each click is an action in the workflow, and
results in a new frame.

Open Closed again

Remember I said you didn’t need to be a designer to use Normal UI? All you need
to be able to do is draw basic squares, circles, and arrows.

What we draw is a workflow diagram.

If you draw a square, it represents transitioning to a new screen. If you draw
a circle, it represents transitioning to a new frame, while staying on the same
screen. Arrows are the action the user takes.

A workflow diagram for opening and closing a single accordion looks like this:

8

If, instead, we moved the contents of the accordion to its own page or a modal
popup, so that clicking the question took you to a new screen, then the app
might look like this:

Question Page Answer Page

and the workflow diagram would look like this:

9

I tend to put the name of the screen in the squares, and a description of the
state of the screen (the frame) in the circles.

Here we already arrive at an easy way to distinguish between normalized and
denormalized interfaces. The diagram for a normalized interface has a lot of
squares (screens). The diagram for a denormalized interface has a lot of circles
(frames).

As you get used to thinking in these terms, you may not even need to draw
everything out. But it can be very helpful when you’re first starting out.

A denormalized interface
(few screens, lots of frames)

A normalized interface
(more screens, less frames)

10

How Do You Normalize?
You may have noticed we’ve used the verb “normalize” and the adjective
“normalized”. The verb “normalize” essentially means to adjust from a more
denormalized to a more normalized state.

So, how do you normalize a workflow exactly? By adding screens. You either: 1)
convert frames to screens, or 2) split one screen into multiple screens.

For frames, you take an action the user does in the software, and instead of
that action keeping them on the same screen, it takes them to a new screen or
modal.

Other times you take a portion of a page, and move it into its own page or
modal.

In the workflow diagram, you might take a circle and make it a square. Or you
might just add more squares.

In this workflow the user
stays on screen A no matter

what action they take.

We normalize an action in
the workflow, taking the user

to a new screen B.

11

If you had built our previous FAQ example, and you changed what happened when the

user clicked a question from “open the accordion” to “go to an answer page”, you would

have just normalized (verb) that “click the question” action. You would have made that

workflow more normalized (noun) overall.

There are two major benefits to normalization, and each has even more positive side

effects: 1) You reduce the user’s cognitive load at that point in the workflow and 2) You give

the screen space to make that point in the workflow more understandable and guessable.

The word “cognition” means the mental action of acquiring knowledge and understanding.

In other words, cognition means the work your brain does. By “cognitive load” we mean

how much the user must think about and comprehend. When you split an action into a

separate screen, you let the user focus on just that action, reducing their cognitive load.

By splitting an action into a separate screen, you also get the benefit of increased real

estate. You can focus the UI elements of a separate page or modal on just what is needed

to accomplish an action. You can place a few big, obvious buttons on the screen, instead

of lots of small hard-to-notice ones.

We will get deeper into the implications and benefits of normalization in just a bit. But don’t

think that this book is going to tell you to split your software across lots of screens. In fact,

sometimes a denormalized workflow will be easier for your users to use!

What we really need, then, is a way to determine whether it’s better to build a normalized

workflow or a denormalized one. We need a way to measure a workflow in our software

and use that measurement to make decisions.

There’s a word for “a method of measuring something”: it’s called a “metric”.

Surprisingly, I’ve found you only need two metrics to decide between normalization and

denormalization: frequency-of-use and complexity.

12

Get The Full Book
Thanks for reading these sample chapters!

You can get the full book, along with a companion video series at
normalui.com. Plus, I’m in the video forums answering questions.

You can also find me, my social media links, and my courses on
my website: tonyalicea.dev. Or drop me a line at hey@tonyalicea.
dev.

- Tony Alicea

v1.01

https://normalui.com
https://tonyalicea.dev

